OPC and PSM design using inverse lithography: A non-linear optimization approach

نویسندگان

  • Amyn Poonawala
  • Peyman Milanfar
چکیده

We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction (OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography. We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure that the estimated masks have only two or three (allowable) transmission values and are also comparatively simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and 100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears, serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized inverse lithography methods for phase-shifting mask design.

Optical proximity correction (OPC) and phase shifting masks (PSM) are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In this paper, we develop generalized gradient-based RET optimization methods to solve for the inverse lithography problem, where the search space is not constrained to ...

متن کامل

PSM design for inverse lithography with partially coherent illumination.

Phase-shifting masks (PSM) are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. Recently, a set of gradient-based PSM optimization methods have been developed to solve for the inverse lithography problem under coherent illumination. Most practical lithography systems, however, use partia...

متن کامل

A pixel - based regularization approach to inverse lithography q

Inverse lithography attempts to synthesize the input mask which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. In this article, we extend our earlier framework for image prewarping to solve the mask design problem for coherent, incoherent, and partially coherent imaging systems. We also discuss the synthesis of three variants of phase shift masks (P...

متن کامل

A Pixel-Based Regularization Approach to Inverse Lithography

Inverse lithography attempts to synthesize the input mask which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. In this article, we extend our earlier framework for image prewarping to solve the mask design problem for coherent, incoherent, and partially coherent imaging systems. We also discuss the synthesis of three variants of phase shift masks (P...

متن کامل

Subwavelength Lithography (PSM,OPC)

Fabrication of fine features of smaller 0.15um is vital for future ultra-large scale integrated (ULSI) devices. An area of particular concern is whether and how optical lithography can delineate such feature sizes, i.e., smaller than the exposure wavelength. Resolution enhancement techniques for achieving subwavelength optical lithography are presented. Various types of phase shift mask (PSM) t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006